Channel是Go中的一个核心类型,你可以把它看成一个管道,通过它并发核心单元就可以发送或者接收数据进行通讯(communication)。

它的操作符是箭头 <-

ch <- v    // 发送值v到Channel ch中

v := <-ch  // 从Channel ch中接收数据,并将数据赋值给v

(箭头的指向就是数据的流向)

就像 map 和 slice 数据类型一样, channel必须先创建再使用:
ch := make(chan int)

Channel类型


Channel类型的定义格式如下:

ChannelType = ( "chan" | "chan" "<-" | "<-" "chan" ) ElementType .

它包括三种类型的定义。可选的<-代表channel的方向。如果没有指定方向,那么Channel就是双向的,既可以接收数据,也可以发送数据。

chan T          // 可以接收和发送类型为 T 的数据

chan<- float64  // 只可以用来发送 float64 类型的数据

<-chan int      // 只可以用来接收 int 类型的数据

<-总是优先和最左边的类型结合。(The <- operator associates with the leftmost chan possible)

chan<- chan int    // 等价 chan<- (chan int)

chan<- <-chan int  // 等价 chan<- (<-chan int)

<-chan <-chan int  // 等价 <-chan (<-chan int)

chan (<-chan int)

使用make初始化Channel,并且可以设置容量:

make(chan int, 100)

容量(capacity)代表Channel容纳的最多的元素的数量,代表Channel的缓存的大小。
如果没有设置容量,或者容量设置为0, 说明Channel没有缓存,只有sender和receiver都准备好了后它们的通讯(communication)才会发生(Blocking)。
如果设置了缓存,就有可能不发生阻塞, 只有buffer满了后 send才会阻塞, 而只有缓存空了后receive才会阻塞。一个nil channel不会通信。

可以通过内建的close方法可以关闭Channel。

你可以在多个goroutine从/往 一个channel 中 receive/send 数据, 不必考虑额外的同步措施。

Channel可以作为一个先入先出(FIFO)的队列,接收的数据和发送的数据的顺序是一致的。

channel的 receive支持 multi-valued assignment,如

v, ok := <-ch

它可以用来检查Channel是否已经被关闭了。

send语句


send语句用来往Channel中发送数据, 如ch <- 3
它的定义如下:

SendStmt = Channel “<-“ Expression .

Channel = Expression .

在通讯(communication)开始前channel和expression必选先求值出来(evaluated),比如下面的(3+4)先计算出7然后再发送给channel。

c := make(chan int)

defer close(c)

go func() { c <- 3 + 4 }()

i := <-c

fmt.Println(i)

send被执行前(proceed)通讯(communication)一直被阻塞着。如前所言,无缓存的channel只有在receiver准备好后send才被执行。如果有缓存,并且缓存未满,则send会被执行。

往一个已经被close的channel中继续发送数据会导致run-time panic

往nil channel中发送数据会一致被阻塞着。

receive 操作符


<-ch用来从channel ch中接收数据,这个表达式会一直被block,直到有数据可以接收。

从一个nil channel中接收数据会一直被block。

从一个被close的channel中接收数据不会被阻塞,而是立即返回,接收完已发送的数据后会返回元素类型的零值(zero value)。

如前所述,你可以使用一个额外的返回参数来检查channel是否关闭。

x, ok := <-ch

x, ok = <-ch

var x, ok = <-ch

如果OK 是false,表明接收的x是产生的零值,这个channel被关闭了或者为空。

blocking


缺省情况下,发送和接收会一直阻塞着,直到另一方准备好。这种方式可以用来在gororutine中进行同步,而不必使用显示的锁或者条件变量。

如官方的例子中x, y := <-c, <-c这句会一直等待计算结果发送到channel中。

import "fmt"

func sum(s []int, c chan int) {

    sum := 0

    for _, v := range s {

        sum += v

    }

    c <- sum // send sum to c

}

func main() {

    s := []int{7, 2, 8, -9, 4, 0}

    c := make(chan int)

    go sum(s[:len(s)/2], c)

    go sum(s[len(s)/2:], c)

    x, y := <-c, <-c // receive from c

    fmt.Println(x, y, x+y)

}

Buffered Channels


make的第二个参数指定缓存的大小:ch := make(chan int, 100)

通过缓存的使用,可以尽量避免阻塞,提供应用的性能。

Range

for …… range语句可以处理Channel。

func main() {

    go func() {

        time.Sleep(1 * time.Hour)

    }()

    c := make(chan int)

    go func() {

        for i := 0; i < 10; i = i + 1 {

            c <- i

        }

        close(c)

    }()

    for i := range c {

        fmt.Println(i)

    }

    fmt.Println("Finished")

}

range c产生的迭代值为Channel中发送的值,它会一直迭代直到channel被关闭。上面的例子中如果把close(c)注释掉,程序会一直阻塞在for …… range那一行。

select


select语句选择一组可能的send操作和receive操作去处理。它类似switch,但是只是用来处理通讯(communication)操作。
它的case可以是send语句,也可以是receive语句,亦或者default

receive语句可以将值赋值给一个或者两个变量。它必须是一个receive操作。

最多允许有一个default case,它可以放在case列表的任何位置,尽管我们大部分会将它放在最后。

import "fmt"

func fibonacci(c, quit chan int) {

    x, y := 0, 1

    for {

        select {

        case c <- x:

            x, y = y, x+y

        case <-quit:

            fmt.Println("quit")

            return

        }

    }

}

func main() {

    c := make(chan int)

    quit := make(chan int)

    go func() {

        for i := 0; i < 10; i++ {

            fmt.Println(<-c)

        }

        quit <- 0

    }()

    fibonacci(c, quit)

}

如果有同时多个case去处理,比如同时有多个channel可以接收数据,那么Go会伪随机的选择一个case处理(pseudo-random)。如果没有case需要处理,则会选择default去处理,如果default case存在的情况下。如果没有default case,则select语句会阻塞,直到某个case需要处理。

需要注意的是,nil channel上的操作会一直被阻塞,如果没有default case,只有nil channel的select会一直被阻塞。

select语句和switch语句一样,它不是循环,它只会选择一个case来处理,如果想一直处理channel,你可以在外面加一个无限的for循环:

for {

    select {

    case c <- x:

        x, y = y, x+y

    case <-quit:

        fmt.Println("quit")

        return

    }

}

timeout

select有很重要的一个应用就是超时处理。 因为上面我们提到,如果没有case需要处理,select语句就会一直阻塞着。这时候我们可能就需要一个超时操作,用来处理超时的情况。
下面这个例子我们会在2秒后往channel c1中发送一个数据,但是select设置为1秒超时,因此我们会打印出timeout 1,而不是result 1

import "time"

import "fmt"

func main() {

    c1 := make(chan string, 1)

    go func() {

        time.Sleep(time.Second * 2)

        c1 <- "result 1"

    }()

    select {

    case res := <-c1:

        fmt.Println(res)

    case <-time.After(time.Second * 1):

        fmt.Println("timeout 1")

    }

}

其实它利用的是time.After方法,它返回一个类型为<-chan Time的单向的channel,在指定的时间发送一个当前时间给返回的channel中。

Timer和Ticker


我们看一下关于时间的两个Channel。
timer是一个定时器,代表未来的一个单一事件,你可以告诉timer你要等待多长时间,它提供一个Channel,在将来的那个时间那个Channel提供了一个时间值。下面的例子中第二行会阻塞2秒钟左右的时间,直到时间到了才会继续执行。

timer1 := time.NewTimer(time.Second * 2)

<-timer1.C

fmt.Println("Timer 1 expired")

当然如果你只是想单纯的等待的话,可以使用time.Sleep来实现。

你还可以使用timer.Stop来停止计时器。

timer2 := time.NewTimer(time.Second)

go func() {

    <-timer2.C

    fmt.Println("Timer 2 expired")

}()

stop2 := timer2.Stop()

if stop2 {

    fmt.Println("Timer 2 stopped")

}

ticker是一个定时触发的计时器,它会以一个间隔(interval)往Channel发送一个事件(当前时间),而Channel的接收者可以以固定的时间间隔从Channel中读取事件。下面的例子中ticker每500毫秒触发一次,你可以观察输出的时间。

ticker := time.NewTicker(time.Millisecond * 500)

go func() {

    for t := range ticker.C {

        fmt.Println("Tick at", t)

    }

}()

类似timer, ticker也可以通过Stop方法来停止。一旦它停止,接收者不再会从channel中接收数据了。

close


内建的close方法可以用来关闭channel。

总结一下channel关闭后sender的receiver操作。
如果channel c已经被关闭,继续往它发送数据会导致panic: send on closed channel:

import "time"

func main() {

    go func() {

        time.Sleep(time.Hour)

    }()

    c := make(chan int, 10)

    c <- 1

    c <- 2

    close(c)

    c <- 3

}

但是从这个关闭的channel中不但可以读取出已发送的数据,还可以不断的读取零值:

c := make(chan int, 10)

c <- 1

c <- 2

close(c)

fmt.Println(<-c) //1

fmt.Println(<-c) //2

fmt.Println(<-c) //0

fmt.Println(<-c) //0

但是如果通过range读取,channel关闭后for循环会跳出:

c := make(chan int, 10)

c <- 1

c <- 2

close(c)

for i := range c {

    fmt.Println(i)

}

通过i, ok := <-c可以查看Channel的状态,判断值是零值还是正常读取的值。

c := make(chan int, 10)

close(c)

i, ok := <-c

fmt.Printf("%d, %t", i, ok) //0, false

同步


channel可以用在goroutine之间的同步。
下面的例子中main goroutine通过done channel等待worker完成任务。 worker做完任务后只需往channel发送一个数据就可以通知main goroutine任务完成。

import (

    "fmt"

    "time"

)

func worker(done chan bool) {

    time.Sleep(time.Second)

    // 通知任务已完成

    done <- true

}

func main() {

    done := make(chan bool, 1)

    go worker(done)

    // 等待任务完成

    <-done

}

官方Channels例子

这是从官方摘录的筛选法求素数的 使用channel的经典例子

// A concurrent prime sieve
package main

import "fmt"

// Send the sequence 2, 3, 4, ... to channel 'ch'.
func Generate(ch chan<- int) {
    for i := 2; ; i++ {
        ch <- i // Send 'i' to channel 'ch'.
    }
}

// Copy the values from channel 'in' to channel 'out',
// removing those divisible by 'prime'.
func Filter(in <-chan int, out chan<- int, prime int) {
    for {
        i := <-in // Receive value from 'in'.
        if i%prime != 0 {
            out <- i // Send 'i' to 'out'.
        }
    }
}

// The prime sieve: Daisy-chain Filter processes.
func main() {
    ch := make(chan int) // Create a new channel.
    go Generate(ch)      // Launch Generate goroutine.
    for i := 0; i < 10000; i++ {
        prime := <-ch
        fmt.Println(prime)
        ch1 := make(chan int)
        go Filter(ch, ch1, prime)
        ch = ch1
    }
}

参考资料


除另有声明外,本博客文章均采用 知识共享(Creative Commons) 署名-非商业性使用-相同方式共享 3.0 中国大陆许可协议 进行许可。